DARSTELLUNG UND KMR-SPEKTREN VON $(CF_3)_2ED$ UND CF_3ED_2 (E = P,As)

R. DEMUTH UND J. GROBE

Eduard Zintl-Institut für Anorganische und Physikalische Chemie der Technischen Hochschule, Darmstadt (Bundesrepublik Deutschland) (Eingegangen am 28. April 1972)

ZUSAMMENFASSUNG

 $(CF_3)_2ED$ und CF_3ED_2 (E = P,As) sind durch Umsetzung von $(CF_3)_2EJ$ bzw. CF_3EJ_2 mit DJ/Hg in hoher Ausbeute zugänglich. Die ¹⁹F- und ³¹P-KMR-Spektren werden mitgeteilt. Die deuterierten Verbindungen zeigen gegenüber den H-Analogen Isotopenverschiebungen der ¹⁹F- und ³¹P-Resonanzsignale.

SUMMARY

 $(CF_3)_2ED$ and CF_3ED_2 (E = P,As) may be obtained in high yield by the reaction of $(CF_3)_2EI$ and CF_3EI_2 , respectively, with DI/Hg. ¹⁹F- and ³¹P-NMR spectra are reported. When compared with the H-analogues, the deuterated compounds show isotopic shifts of the ¹⁹F- and ³¹P-resonance signals.

EINLEITUNG

Im Rahmen eines größeren Programmes zur Untersuchung der Schwingungsspektren von CF₃-Elementverbindungen^{1, 2} interessierten auch die Verbindungen (CF₃)₂EH(D) und CF₃EH₂(D₂) (E = P,As). Das Literaturstudium ergab, daß die deuterierten Verbindungen bisher nur zum Teil beschrieben^{3, 4} und auch die H-Analogen kernresonanzspektroskopisch noch nicht vollständig charakterisiert sind. Es ist Ziel der vorliegenden Mitteilung, diese Lücke zu schließen.

ERGEBNISSE UND DISKUSSION

Die $(CF_3)_2ED$ - und CF_3ED_2 -Verbindungen (E = P,As) sind nach dem von Cavell und Dobbie⁵ für die Darstellung von $(CF_3)_2EH$ bzw. CF_3EH_2 beschriebenen Verfahren in Ausbeuten von etwa 90% zugänglich. Für die vollständige Umsetzung

ist ein Überschuß an DJ und Quecksilber erforderlich, da diese unter D_2 -Entwicklung und HgJ₂-Bildung miteinander reagieren.

Zur Charakterisierung der Verbindungen wurde neben der Molekulargewichtsbestimmung die Kernresonanzspektroskopie herangezogen. In den ¹⁹Fund ³¹P-KMR-Spektren sind alle erwarteten Kopplungen (²J(PF), ³J(FD), J(PD)) nachzuweisen.

Die ¹⁹F-Resonanz des $(CF_3)_2$ PD besteht aus einem Dublett, dessen Signale bei höherer Auflösung in drei Linien gleicher Intensität aufspalten (³J(F-D)). Im ³¹P-Spektrum beobachtet man drei intensitätsgleiche Linien (J(PD)), die jeweils Septettstruktur zeigen (³J(FD)). Das (CF₃)₂AsD zeigt im ¹⁹F-Bereich ein Signal, das als Folge der F-D-Kopplung aus drei Linien gleicher Intensität besteht.

Bei den zweifach deuterierten Verbindungen CF_3PD_2 und CF_3AsD_2 ist die von der Theorie geforderte Aufspaltung in ein Quintett der Intensität 1:2:3:2:1 (³*J*(FD) bzw. *J*(PD)) sowohl im ¹⁹F- als auch im ³¹P-Spektrum zu beobachten. Das ¹⁹F-Spektrum des CF_3PD_2 besteht aus einem Dublett (²*J*(PF)) aus Quintetts (³*J*(FD)), das ³¹P-Spektrum aus einem einfachen Quintett (*J*(PD)), wobei jede Linie Quartettstruktur (²*J*(PF)) zeigt. CF_3AsD_2 wird im ¹⁹F-Spektrum durch ein Quintett (1:2:3:2:1) angezeigt (³*J*(FD)). In Tabelle 1 sind die Daten den Werten der entsprechenden H-Verbindungen gegenübergestellt.

TABELLE 1

chemische verschiebung [ppm]* und kopplungskonstanten [Hz] von (CF₃)₂ED bzw. CF₃EH₂ im vergleich mit (CF₃)₂EH bzw. CF₃EH₂ (E = P,As)

Verbindung	¹⁹ F-Resonanz			³¹ P-Resonanz		
	φF	$^{2}J(\mathrm{FP})$	³J(FD/H)	δ	² <i>J</i> (PF)	J(PD/H)
(CF ₃) ₂ PD	49,4	68,8	1,6	50,5	69,0	33,5
(CF ₃) ₂ PH	49,3	68,9	10,0	49,3	69,5	216,0
(CF ₃) ₂ AsD	43,7		1,3			
(CF ₃) ₂ AsH	43,6	—	9,2		_	
CF ₃ PD ₂	43,5	48,5	1,8	129,1	48,8	31,0
CF ₃ PH ₂	43,3	47,4	12,0	126,2	48,8	198,0
CF ₃ AsD ₂	37,1		1,6		—	
CF ₃ AsH ₂	36,9		10,6			

* Die chemischen Verschiebungen sind bezogen auf CCl₃F bzw. 85% H₃PO₄ jeweils als äußerer Standard (bei 30°). Die Messungen erfolgten an einem Gemisch aus Deutero- und Wasserstoff-Verbindung mit CCl₃F/TMS als Lösungsmittel.

Die deuterierten Verbindungen zeigen sowohl im ¹⁹F- als auch im ³¹P-Spektrum gegenüber den H-Analogen Isotopenverschiebungen. Diese wurden durch Messung an Gemischen der jeweiligen H- und D-Verbindungen bestimmt. Die Werte sind in Tabelle 2 wiedergegeben. DARSTELLUNG UND KMR-SPEKTREN VON $(CF_3)_2ED$ und CF_3ED_2 (E = P,As) 265

TABELLE 2

isotopenverschiebung [ppm]* von (CF_3)_2ED bzw. CF_3ED_2 gegenüber (CF_3)_2EH bzw. CF_3EH_2 (E=P,As)

Verbindung	Isotopenverschiebung im ¹⁹ F-Spektrum	Isotopenverschiebung im ³¹ P-Spektrum	
(CF ₃) ₂ PD	0,09	1,15	
(CF ₃) ₂ AsD	0,08		
CF ₃ PD ₂	0,18	2,94	
CF ₃ AsD ₂	0,16		

* Gemessen am Gemisch (CF₃)₂ED/H bzw. CF₃ED₂/H₂ und relativ zur Wasserstoffverbindung.

Isotopenverschiebungen wurden erstmalig von Wimett⁶ und später von Gutowsky⁷ in der Protonenresonanzspektroskopie beobachtet. Die gefundenen Effekte betragen maximal 0,1 ppm. Wesentlich größere Verschiebungen von etwa 0,6 ppm konnte Tiers^{8,9} in Fluorresonanzspektren von Fluoralkanen nachweisen. Ein Deuterium-Isotopeneffekt in der ³¹P-Resonanzspektroskopie wurde von Fluck, Bürger und Goetze¹⁰ an (CH₃)₃SiPD₂ und [(CH₃)₃Si]₂PD beschrieben.

Die Gründe für das Auftreten der Isotopenverschiebung sind nach wie vor nicht völlig geklärt. Ursprünglich wurde sie als Folge der unterschiedlichen Nullpunkts-Schwingungsamplituden von Wasserstoff und Deuterium gedeutet¹¹. Wegen der Größe der Effekte bei P–D-Verbindungen neigt man heute eher dazu, sie vorwiegend der Änderung der Bindungshybridisierung bei der Substitution von Wasserstoff gegen Deuterium zuzuschreiben^{12,13,14}.

Die für $(CF_3)_2PD$ und CF_3PD_2 erhaltenen Daten bestätigen die Ergebnisse von Fluck *et al.*¹⁰. Die Effekte in den ³¹P-Spektren sind wesentlich größer als die in den ¹⁹F-Spektren, ein Resultat, das wegen der größeren Entfernung zwischen Fluor und Wasserstoff bzw. Deuterium der Erwartung entspricht. Bestätigt wird auch die Vergrößerung des Effektes mit steigender Zahl von D-Substituenten. Dabei ist die Abhängigkeit des Effektes von der Zahl der D-Atome in den ¹⁹F-Spektren in guter Näherung linear, nicht dagegen bei den ³¹P-Resonanzspektren.

EXPERIMENTELLES

Allgemeine Untersuchungsmethoden

Die ¹⁹F-KMR-Spektren wurden mit einem Variant T60-KMR-Spektrometer, die ³¹P-Spektren mit einem Modell HFX 90 der Firma Brucker Physik aufgenommen. Alle Operationen wurden an einer Standard-Hochvakuumapparatur unter Ausschluß von Luft und Feuchtigkeit vorgenommen.

Ausgangsverbindungen

 $(CF_3)_2PJ$ und $CF_3PJ_2^{15}$ bzw. $(CF_3)_2AsJ$ und $CF_3AsJ_2^{16}$ wurden durch Umsetzung von rotem Phosphor bzw. pulverförmigem Arsen mit J₂ und CF_3J dargestellt. DJ wurde durch Hydrolyse von sorgfältig gereinigtem PJ_3^{17} mit D₂O (Uvasol, Fa. Merck, Darmstadt) erhalten. In einem sorgfältig ausgeheizten und mit trockenem Stickstoff gefüllten Zweihalskolben wird PJ₃ vorgelegt und tropfenweise mit D₂O versetzt. Zur besseren Durchmischung wird dabei mit einem Magnetstab gerührt. Das DJ wird über Glasverbindungen in den Fraktionierteil einer Hochvakuumapparatur überführt, zweimal durch Bäder von -78° fraktioniert (Ausbeute *ca.* 90%).

Darstellung von $(CF_3)_2ED$ und CF_3ED_2

 $(CF_3)_2 ED \ (E = P, As)$

5 mMol $(CF_3)_2EJ$, etwa 10 ml Quecksilber und 10 mMol DJ werden in einem sorgfältig ausgeheizten und evakuierten 1-l-Kolben (mit Schiffschem Hahn) bei Raumtemperatur 4 Stunden kräftig geschüttelt. Danach wird der Kolben auf --196° gekühlt, entstandenes D₂ abgepumpt und nochmals 4 mMol DJ einkondensiert. Nach erneutem dreistündigen Schütteln wird das Reaktionsgemisch im Vakuum fraktioniert (Bäder bei --95°, --196°). Die (CF₃)₂ED -Verbindungen werden in Ausbeuten von 90-92% erhalten und durch Molekulargewichtsbestimmung (für E = P: gef. 170,1, ber. 172; für E = As: gef. 215,5, ber. 215), IRund ¹⁹F-KMR-Spektren charakterisiert. Die Reinheit der Substanzen war nach Aussage des KMR-Spektrums >99,5%.

CF_3ED_2 (E = P,As)

5 mMol CF₃EJ₂, etwa 10 ml Quecksilber und 15 mMol DJ werden in der oben beschriebenen Weise umgesetzt. Nach Absaugen des D₂ werden erneut 8 mMol DJ einkondensiert. Reaktionsdauer insgesamt 7 Stunden. Die Fraktionierung in der Vakuumapparatur (Bäder bei -95° und -196°) liefert die Substanzen in einer Reinheit >99,5% in Ausbeuten von 89-92%. Die Charakterisierung der Verbindungen erfolgt durch Messung des Molekulargewichtes (für E = P: gef. 103,5, ber. 104; für E = As: gef. 148, ber. 148) und Aufnahme der IR- und ¹⁹F-KMR-Spektren.

DANK

Herrn Professor Dr. G. Fritz [Universität (T.H.) Karlsruhe] danken wir für die Möglichkeit der Benutzung der Kernresonanzgeräte, Herrn Domnick für die Aufnahme der Spektren. Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gilt unser Dank für die finanzielle Unterstützung der Arbeit. Darstellung und KMR-spektren von $(CF_3)_2ED$ und CF_3ED_2 (E = P,As) 267

LITERATUR

- 1 H. BÜRGER, J. CICHON, J. GROBE UND F. HÖFLER, Spectrochim. Acta, 28A (1972) 1275.
- 2 H. BÜRGER, J. CICHON, J. GROBE UND R. DEMUTH, Spectrochim. Acta, im Druck.
- 3 J. Y. M. WANG, C. O. BRITT, A. H. COWLEY UND J. E. BOGGS, J. Chem. Phys., 48 (1968) 812.
- 4 J.A. LANNON, Diss. Abstr., B27 (1967) 4345.
- 5 R. G. CAVELL UND R. C. DOBBIE, J. Chem. Soc. (A), (1967) 1308.
- 6 T. F. WIMETT, Phys. Rev., 91 (1953) 476.
- 7 H. S. GUTOWSKY, J. Chem. Phys., 31 (1959) 1683.
- 8 G.V.D. TIERS, J. Amer. Chem. Soc., 79 (1957) 5585.
- 9 G.V.D. TIERS, J. Chem. Phys., 29 (1958) 963.
- 10 E. FLUCK, H. BÜRGER UND U. GOETZE, Z. Naturforsch., 22b (1967) 912.
- 11 N. F. RAMSEY, Phys. Rev., 87 (1952) 1075.
- 12 L. PETRAKIS UND C. H. SEDERHOLM, J. Chem. Phys., 35 (1961) 1174.
- 13 J. BERNHEIM UND B. J. LAVERY, J. Chem. Phys., 42 (1965) 1464.
- 14 R. M. LYNDEN-BELL, Trans. Faraday Soc., 57 (1961) 88.
- 15 F. W. BENNETT, H. J. EMELÉUS UND R. N. HASZELDINE, J. Chem. Soc., (1953) 1565.
- 16 H. J. EMELÉUS, R. N. HASZELDINE UND E. G. WALASCHEWSKI, J. Chem. Soc., (1953) 1552.
- 17 F. E. E. GERMANN UND R. N. TRAXLER, J. Amer. Chem. Soc., 49 (1927) 307.